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SUMMARY This article analyzes dynamics of the chaotic
neural network and minimum searching principle of this net-
work. First it is indicated that the dynamics of the chaotic neu-
ral network is described like a gradient descent, and the chaotic
neural network can roughly find out a local minimum point of
a quadratic function using its attractor. Secondly It is guaran-
teed that the vertex corresponding a local minimum point derived
from the chaotic neural network has a lower value of the objective
function. Then it is confirmed that the chaotic neural network
can escape an invalid local minimum and find out a reasonable
one.
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1. Introduction

Recently the chaotic neural network is studied from
the viewpoint of a minimum searching machine.
Nozawa [1] has proposed a new method of solving the
traveling salesman problem (TSP) using the chaotic
neural network and has shown solving ability experi-
mentally. Chen and Aihara[2] have proposed a chaotic
simulated annealing and confirmed the ability of the
chaotic neural network. However the mechanism of the
minimum searching by the chaotic behavior is not clear.

We analyze dynamics of the chaotic neural network
and minimum searching principle of this network. First
the chaotic neural network is defined and its behavior is
considered theoretically and experimentally. As a result
we prove that the dynamics of the chaotic neural net-
work is described like a gradient descent. Then we con-
firm that the chaotic neural network can roughly find
out a local minimum point of a quadratic function us-
ing its attractor. Secondly we guarantee that the vertex
corresponding a local minimum point derived from the
chaotic neural network has a lower value of the objec-
tive function. Then we indicate that the chaotic neural
network can escape an invalid local minimum and find
out a reasonable one.

2. Chaotic Neural Network

In this section a chaotic neural network is defined. Its
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behavior is considered theoretically and experimentally.
As a result we will prove that the dynamics of the
chaotic neural network is described like a gradient de-
scent. Furthermore we will say that the chaotic neural
network can roughly find out a local minimum point of
a quadratic function using its attractor.

2.1 Definition of Chaotic Neural Network

The chaotic neural network in this article is de-
rived from the differential equations of the Hopfield’s
model [3]. It has proposed by Nozawa [1]. In the Hop-
field’s model, the behavior of neuron s (i = 1,2,..., M)
is defined as follows[3] :

. M
dui(t)* ui(t) o .
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- 1+exp(-ui(t)/a)’

v (t) =5 (us(t)) (2)
where u;(t) is the input of neuron i at continuous time
t, vi(t) is the output of neuron 7, Tj; is the synaptic
connection of neuron j to neuron i, I; is the threshold
value of neuron ¢, R (> 0) is the damping constant of
the input, S(-) is the sigmoidal function and « (> 0) is
the gain constant of the function S.

The chaotic neural network is defined as the dif-
ference equation version of Egs. (1) and (2) by Euler’s
method with the difference step At.

M n At k
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where n is the discrete time. It is assumed that u;(0) =0
and n is an enough large number at the change from
Eq. (1) to Eq.(3).

An internal buffer of neuron 7 at the discrete time
n is defined as

At [ At\F
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From Eq.(5), Eq.(3) is rewritten as
wi(n) = R (0L, Tiyps(n) + 1) (6)
Then, Eq.(5) is described as follows:

pn+ )= (1= ) i) + Frun)

—pi(n) + 2 (i) — i)}, )

The behavior of the chaotic neural nétwork, therefore,
is described as follows from Egs. (7), (4) and (6):

pi(n+ 1) =pi(n) +€4; and - (8)

1
4; = —pi(n),
1+ eXP{‘g (ZjM:l Tijpi(n) + I,»)

——

€)

wheree = At/R. Bisdefinedas 8 = 55, T = —1;; >0
for the latter.

2.2 Dynamics of Chaotic Neural Network

In this subsection, we investigate a behavior of the
chaotic neural network.

Figure 1 (a) shows the conceptual graph of Eq.(9)
with T;; = 0 (i # j) and 0 < —1;/T;; < 1. The point
‘7’ (illustrated by o) corresponds to where the sign of
A; changes. At the point ‘C’ (illustrated by e), the sig-
moidal function is 0.5 so that the input for the neuron :
is zero; Z Tijp;+1; = 0. If 3 is small enough, the point
‘C becomes close to the point ‘Z’. Figure 1(b) shows
the integral calculus of —A;. This curve is drawn on
the two parabolas corresponding to [y and I respec-
tively. The bottom of this curve corresponds the point
‘Z’. From Eq.(8), it is considered that the behavior of
pi(n) is by the gradient descent method, so that the state
pi(n) goes down the point ‘Z’, approximately the point
‘C’, on the curve in Fig. 1(b). An example of dynam-
ics is shown in Fig.2. This is a return map of p;(n).
The horizontal axis and the vertical axis show p;(n)
and p;(n + 1) respectively, and the solid line shows the
trajectory of p;(n) according to Egs.(8) and (9), where
e =0.26,a/R = 0.006 and —I;/T;; = 0.2. The point ‘C’
in Fig.2 corresponds to ‘C’ in Fig.1(b) and it’s close
to the bottom ‘Z’ of the integral calculus. It is obvious
from the figure that p;(n) never stop at the bottom and
it wanders around the bottom non-periodically, that is
chaotic. We may say that there is an attractor of the
chaotic dynamics around the bottom in Fig. 1 (b).

Next we consider a linear dynamical system which
is defined by exchanging A; for A; = Z]]Vil Tiipi(n)+1;
in Egs. (8) and (9). ‘A, is extracted and defined from the
index of the exponential function of Eq. (9). Figure 1(c)

shows the graph of ‘A;. A, is a linear function of p; so
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Integral calculus of-A;

Fig. 1  Graphs of A; and A;, and their integral calculuses.
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Fig. 2 The return map of the single chaotic neuron.

that it is drawn by a straight line. Then A,; intersects to
p;-axis at the point ‘C” as same as ‘C’ of Fig.1(a). Be-
cause at the point ‘C” in Fig. 1(a) where the sigmoidal
function is 0.5, the index of the exponential function
of S(u;(n)) is equal to zero, that is u;(n) = RA; = 0,
from Egs.(4) and (6). Thus ‘C’ of Fig.1(c) is equiv-
alent to Fig. 1(a)’s ‘C’. Figure 1 (d) shows the integral
calculus of —A;. It’s an exact quadratic function and it
has a local minimum at the point ‘C’. The behavior of
the linear dynamical system is convergence to this local
minimum. In other words, the local minimum of the
quadratic function is an asymptotically stable point for
the linear system. In Fig.1(b), if 8 is small enough,
the sigmoidal function is close to the step function and
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the point ‘Z’ is close to the point ‘C’. At that time, it is
clarified that the sign of A; is the same as the sign of
4; in all domain: 0 < p; < 1. Therefore these curves of
Fig. 1(b) and (d) have a bottom at the same position if
B is small enough. Namely we can say that there is an
attractor of the chaotic dynamics around the bottom of
the quadratic function.

This consideration is also supported by a higher
dimensional system.

Figure 3 shows the dynamics of the chaotic neu-
ral network made of two neurons (M = 2): This fig-
ure satisfies the following conditions: all eigenvalues of
the weight matrix W = [T};] are negative and the so-
lution p¢ of Wp® + I = o is in the Hypercube, where
I = (I,...,Iy) and the Hypercube is [0,1]™. These
conditions guarantee that p¢ is a local minimum of the
quadratic function; F(p) = —2p'Wp— I'p, and the lo-
cal minimum exists in the Hypercube. p¢ is illustrated
in Fig.3 as ‘C’, which corresponds to ‘C’ in Fig. 1. The
line A and B correspond that the input for the neuron
1 and 2 are zero; Z;‘il Tijp; + I; = 0 (i = 1,2). From
Eq.(9) and Fig. 1(a), p1 decreases in the right area of
the line A and p; increases in the left area. Then p, de-
creases in the upper area of the line B and p, increases
in the lower area. Assuming an initial state p(0) of
Egs.(8) and (9) is the point ‘I’, the state goes to the
origin and comes close to the line A. When the state ar-
rives to the line A or a neighborhood, in the next step
it mgves to the direction p; increasing (marked ‘Jump’
in Fig.3). After the transition, the state will come close
to the line B. In this way, it is proved theoretically that
p(n) wanders around ‘C’.

Figure 4 shows practical examples of four weight
matrices which satisfy the above conditions. #; and 6,
are angles of these lines based on the p,-axis and the p; -
axis respectively. I;/T = 0.067, 8 = 0.006 and € = 0.3.
From this figure, it is confirmed that the state wanders
around of the local minimum.

As a result it is obvious that from the viewpoint of
not v(n) but p(n), the dynamics is described by Egs. (8)
and (9) like a gradient descent. Then from the similar-
ity of the sign of A; and A;, the dynamics is character-
ized from an asymptotically point of the linear system,
that is a local minimum of a quadratic function. In
other words, there is an attractor of the chaotic dynam-
ics around a local minimum of a quadratic function.
This result indicates that the chaotic neural network can
roughly find out a local minimum point of a quadratic
function using its attractor.

3. Linear Dynamical System and Objective Function

In the previous section we say that the chaotic neural
network can roughly find out a local minimum point
of a quadratic function using its attractor. However it
is not clear that we can obtain a reasonable solution
of a combinatorial optimization problem described as
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Fig. 3 Two dimensional state space of the chaotic neural net-
work.
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Fig. 4 Four attractors by the two dimensional system.

minimizing a quadratic function, that is, an objective
function. The reason is that a local minimum point by
the chaotic neural network exists inside the Hypercube.
However the solution of a combinatorial optimization
problem exists at a vertex of the Hypercube. We need a
method of estimating a vertex from the obtained inside
point. Additionally it must be guaranteed that the value
of the quadratic function is small enough at the vertex.

In this article we adopt the step function as the
above method. Concretely in case that an element of
the inside point is positive, let the element be 1, and in
otherwise, let the element be 0.

In this section we try to guarantee that the vertex
estimated from the above method has a lower value of
the objective function. First we define a linear dynam-
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ical system and mention conditions for an asymptoti-
cally stable point of the system, corresponding to ‘C’ in
Fig. 1. We next exactly investigate the relation between
the asymptotically stable point and a valueof the ob-
jective function at the vertex. As a result, we will have
that a value of the objective function at a vertex with
an asymptotically stable point is tend to be smaller than
without an asymptotically one.

3.1 Definition of Linear Dynamical System and
Asymptotically Stable Point

From the previous considerations, the state of the
chaotic neural network wanders around the local min-
imum of the quadratic function. In this subsection, we
define the local minimum as an asymptotically stable
point of a linear dynamical system exactly.

First we define the linear dynamical system with
a constraint. The system consists of variables z; (i =
1,2,..., M) which are constrained in a first quadrant.
In this article the first quadrant is defined as ¥4;z; = 0.

dz; _ 0, (z;=0 and (Wx + I); < 0)
dt ~ |(Wx+1I);, (otherwise)
(10)

where, (Wx+1); is the ith element of the vector Wz +1,
that is Y17, Tyjz; + Ii, and W = [Tyy] is an M x M
symmetric matrix. This system is given by rewriting the
difference equation with A, in Sect.2.2 to the differen-
tial equation. Then the point ‘C’ in Fig.1(c)(d) is an
asymptotically stable point in Eq. (10).

We next define to expression of an asymptotically
stable point. Let’s assume that there is an asymptot-
ically stable point * on a k dimensional coordinate
plain, which is spread by k pieces of coordinate axes.
Here the order of the element z} (i = 1,2,...,M) of
the vector z* is rearranged to =z} > 0(i = 1,2,...,k)
and z} = 0(¢ = k+1,...,M), then we redefine the
rearranged vector to * without loss of generality. The
vector is separated to two vectors, 7 and 3. The size
of z} is k and all elements are positive. The size of x3
is M — k and all elements are zero. Additionally this
rearrangement and separation of x* are applied to the
weight matrix W and the threshold vector I;

13
W = ( Vm[g Vﬂ‘g > and I = (It 1),
where, Wi, Wy and W3 are k x k, (M — k) x k and
(M — k) x (M — k) matrices respectively. I is a k di-
mensional vector. I, is an M — k dimensional vector.
t represents transposition.

An example is shown by the following 3 x 3 matrix
and the 3 dimensional vector;

-1 -2 =05 0.05

W = -2 -1 -03 and I =1 0.05
—0.5 -0.3 -1 0.05
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The linear dynamical system consisting of above W and
I has an asymptotically stable point (0,0.038,0.038) on
the z5-z3 coordinate plain.

Considering the asymptotically stable point x*
= (0,0.038,0.038), (z1,z2,z3) is transformed into
Z2,Z3,Z1) by rearrangement. Namely =*, W and I
are rewritten to (0.038,0.038,0),

-1 -03 -2 0.05
W=1]-03 -1 -05 and I =1 0.05
-2 -05 -1 0.05

Note that I is not changed in this case. The plain 1, 2
and 3 before rearrangement are represented to plain 3, 1
and 2 respectively. The three plains ( Wz +1I); =0 (i =
1,2,3) are illustrated in Fig.5 after rearrangement. In
this figure o is an asymptotically stable point.

Then separation is carried out as follows:

z] = (z7,z5) = (0.038,0.038), x5 = (x3) = (0),

~1 0.3
Wy = ( 8 -4 ) Wy = (-2 —05),

Wy = (1), I, = ( oo ) and I, = (0.05).

Secondly we turn our attention to the condition of

“x* to be an asymptotically stable point. The conditions

are expressed as follows.
[Conditions of z* to be asymptotically stable ]

1. Wlw{ + I, =07 and :I:; = 03.

2. All eigenvalues of Wy are negative.

3. ngf + I3 < 0s.
where, 0; and o, is k and M — k dimensional zero vec-
tors. Wz + I < o means that all elements of the vector
Wa + I are negative.

We say detail of the conditions and confirm the

previous example.
Condition 1: The first condition is derived from that
the right side of Eq.(10) is zero, On the example it is
obvious from Fig. 5 that =* exists on the z;-z2 coordi-
nate plain, ie. z3 = 0, and on the plain 1 and 2 which

“\/ (Wx+I)1 =0

\
4, X7(0.038, 0.038, 0)

\

.............................. %

Fig. 5 The three plains and an asymptotically stable point of
the linear dynamical system after rearrangement and separation.
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correspond to Wi} + I1 = 0;. Hence the right side of
Eq.(10) by =* is zero, and namely x* satisfies the first
condition.

Condition 2: The second condition is derived from that
x* is an asymptotically stable point ‘on the coordinate
plain &3 = 0;’. On the example =* is on the coordinate
plain z3 = 0. All eigenvalues of W, are calculated as
—1.3 and —0.7. It is well known on a linear dynamical
system that all eigenvalues of a matrix being negative
implies a equilibrium point being asymptotically sta-
ble. Namely x* is an asymptotically stable point on
3 = 0.

Condition 3: The third condition is derived from the
inside of the parentheses in the upper line of the right
side of Eq.(10). Combining the condition 1 and 3,
x* is guaranteed an equilibrium point. Because if
Waz] + I > 03 on the example, from Eq. (10) the state
started from z* can move to the direction x3 increasing.
In this case * is not asymptotically stable.

3.2 Objective Function and Asymptotically Stable
Point

In this section we discuss relation of an asymptotically
stable point and an objective function of a minimum
searching problem.

First we define a minimum searching problem.
[Minimum searching problem ]

In this article a minimum searching problem is ex-
pressed such as to find out the y at which the following
quadratic function takes the global minimum.

1
F(y)=—§ytAy—bty (11)

Where’ Yy = (y17y23--‘7yM)t7yi = 1OFO(Z = 1,2
...,M), A = [—aij], A5 = Qjq 2 O, Q;; = 0, b =
(b1,b2,...,bar)t, b; = b > 0. This quadratic function
is called the objective function. The objective function
defined above is commonly used in a general combina-
torial optimization problem, for example the traveling
salesman problem and the N-Queen problem.

From the given objective function we can define
the parameter of the linear dynamical system with a
constraint as mentioned previous subsection.

W=I[T;], Tij=-ay; <0 (i #j), Ta=-T <0

I=(h, L., Iy), =T=~b>0

Note that the values of T' and vy (> 0) are decided in-
dependently of the given objective function.

We consider a vertex point y of the Hypercube
which belongs to k dimensional coordinate plain. Here
the order of the element y; (i = 1,2,...,M) in y is
rearranged to y; = 1 (¢ = 1,2,...,k) and y; = 0(s =
k+1,..., M), then we redefine the rearranged vector to
y. The vector is separated to two vectors, y; and y,.
The size of y; is & and all elements are one. The size
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of y, is M — k and all elements are zero. Additionally
rearrangement and separation of «* are applied to the
weight matrix W and the threshold vector I and .

¢
W= <%;~%23>, I=(I},I}) and @ = (x¢,2})".
On the example mentioned above, the vertex corre-
sponding to «* = (0.038,0.038,0) is y = (1,1,0) in
Fig.6. Then y, = (1,1) and y, = (0). The value of
the objective function at each vertex is calculated by
Eq.(11) and indicated in Fig. 6.

Secondly we have the following lemmas easily.
Lemma 1: F(y) is proportional to the sum of abso-
lute value of all elements on ith row in Wi, which is
represented as |y ;| = Z;c:l |Tisl.

Proof: Note y, = 03, T;; < 0 and I; = I, F(y) is
calculated as follows:

1 1
Fly) = —sy'Wy-I'y = —5¥iWiy, — Ly,

k k 1 k
SN Tyl -kl = 5 D (Wil — kL.
i=1 j=1

Il

NN

i=1
O

. We consider which the intersection Z of all plains
(Wixy+11); =0 (1 =1,2,...,k) on the k dimensional
coordinate plain is stable or not.
Lemma 2 The intersection Z of all plains (Wyx; +
I,); =0 (i = 1,2,...,k) on the k dimensional coor-
dinate plain is an asymptotically stable point if T’ and
[Wal (i=Fk+1,...,M) are large enough.
Proof: We consider the three conditions mentioned pre-
vious subsection.

It is clear that by its definition the intersection &
satisfies the first condition.

The second condition is satisfied if T is large
enough, because it is well known that all eigen values of
a matrix are negative if its diagonal elements are nega-
tive and large enough, from the Gerschgorin’s theorem.
In general T is defined independently of a given objec-
tive function. Therefore the second condition is satisfied
for general objective functions if T' is large enough.

\y (1,1,0)

F(0,1,1)=04 F
\ F(1,1,0=0.2

F(1,0,1)=1.9

Fig. 6 The three vertices and values of the objective function.
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Lastly it’s the third condition. Let the minimum
value in all elements of Z; be T;,;. Note that all el-
ements of T; are positive and all elements of W are
negative, we have

(Womy + I); < —T1,1|Wa | +1,

where |Wy ;| = Z?:l |T%;]. Therefore in order to satisfy
(ngl + I2)1 <0 (Z =k+1,.. .,M), —51,1|W27i| + 1
must be negative. In other words when |W5 ;| is larger
than I/, ;, the intersection satisfies the third condition.

O

From the lemma 1 and 2, we have the following
theorem. .

Theorem: There is an asymptotically stable point on
a coordinate plain, if the objective function is small
enough at the vertex y; on the plain.

Proof: From the lemma 1, to find out a vertex y,
with a lower objective function means to decide of W,
with small elements, and at the same time to decide
of W{ with large elements from various separations of
W. Note that the larger |W3,| (i = 1,...,k) are, the
larger |Wo;| (i = k+1,..., M) are, to find out a ver-
tex with a lower objective function means to get larger
[Wa,| (i =k+1,...,M). On the other hand from the
lemma 2 if [W5 4| is large enough, there is an asymptoti-
cally stable point on the k£ dimensional coordinate plain
defined by W5. Namely, if the objective function is small
enough at the vertex y,; on a coordinate plain, there is
an asymptotically stable point on the plain. O

Lastly to confirm the theorem we have a simple
numerical experiment. This experiment is carried out
on the traveling salesman problem of 10 cities defined
by Hopfield. We provide 254 vertices on Hypercube
corresponding to a valid tour. Let each vertex be y.
Each y corresponds to a shorter tour and has a lower
value of the objective function. From above rearrange-
ment and separation, y is redefined and the coordinate
plain corresponding to y, is defined. In the coordi-
nate plain we compute the intersection Z of all plains
(Wi +I1); =0 (¢ = 1,2,...,k) on the coordinate
plain, which is a candidate for an asymptotically stable
point. Here we investigate tour length of ¥ and stabil-
ity of . Stability is estimated from the maximum value
among (Wo®1 +I3); (i =k+1,...,M). Because when
the value is negative, WoT; + I, < 05 can be satisfied
and from the third condition we can say that T is an
asymptotically stable point.

The result is shown in Fig.7. The horizontal axis
shows a tour length of each y. The vertical axis shows
above stability. From Fig.7 it is obvious that the sta-
bility of T is roughly proportional to the tour length
represented by y corresponding to . Additionally &
with the global minimum is stable. This result supports
that the objective function at the vertex on the coordi-
nate plain with an asymptotically stable point is tend
to be smaller than without an asymptotically one.
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Fig. 7 Experimental result.

As a result, we can guarantee that the vertex de-
rived from an asymptotically stable point has a lower
value of the objective function. Combining the result
of this subsection and previous section, it is guaranteed
that we can obtain the reasonable solution of the mini-
mum searching problem by the chaotic neural network
if parameters T and ~ are suitable.

3.3 Discussion

‘The theorem mentioned previous subsection is impor-
-tant for various analog recurrent neural network with

negative self-feedback connections.

In the past study Uesaka[4] has analyzed stabil-
ity of an analog recurrent neural network without self-
feedback connections. It is very important for various
minimum searching problem using this network. Be-
cause it exactly stated relation between an asymptoti-
cally stable point of an analog recurrent neural network
without self-feedback and a local minimum of an ob-
jective function. We have analyzed an analog recurrent
neural network with self-feedback connections[5]. It
indicated to exist an equilibrium point on the coordi-
nate plain. However it discussed to stability of a vertex
and didn’t say availability of the equilibrium point.

From the view point of self-feedback connections,
it is considered that the theorem in this article is ex-
pansion of Uesaka’s work. The theorem states relation
between an asymptotically stable point of an analog re-
current neural network ‘with negative self-feedback’ and
a vertex with a lower objective function. It is very im-
portant for various minimum searching problem using
this network.

In this way the theorem is independent of the
chaotic system. However the theorem is not effective for
a convergence system, for example the Hopfield’s model.
In other words, The theorem doesn’t say that we always
get the global minimum using the Hopfield’s network
or linear system as mentioned above. Because a conver-
gence system cannot escape a local minimum. From
Fig.7, there are several asymptotically stable points
with not lower objective function. If the convergence
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system would be caught by these local minimums, we
cannot get a suitable solution. On the other hand, the
chaotic system has chaotic fluctuation (in this article this
fluctuation is represented as a roughly gradient descent).
Therefore using the fluctuation, the chaotic system can
escape a local minimum.

4. Conclusion

We analyzed dynamics of the chaotic neural network
and minimum searching principle of this network.

First the chaotic neural network was defined and its
behavior was considered theoretically and experimen-
tally. As a result we proved that the dynamics of the
chaotic neural network is described like a gradient de-
scent. Then we confirmed that the chaotic neural net-
work can roughly find out a local minimum point of
a quadratic function using its attractor. Secondly we
guaranteed that the vertex corresponding a local min-
imum point derived from the chaotic neural network
has a lower value of the objective function. Namely we
resulted that the chaotic neural network can escape an
invalid local minimum and find out a reasonable one.

In the future we must investigate property of escape
from a local minimum by the chaos. From the view-
point of the difference points between the chaos and
non-chaos, we must discuss ability of the chaotic neural
network.
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