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Abstract: This paper reviews applications of stochastic computing in brainware LSI (BLSI)
for visual information processing. Stochastic computing exploits random bit streams, realizing
the area-efficient hardware of complicated functions, such as multiplication and tanh functions
in comparison with binary computation. Using stochastic computing, we implement the hard-
ware of several physiological models of the primary visual cortex of brains, where these mod-
els require such the complicated functions. Our vision BLSIs are implemented using Taiwan
Semiconductor Manufacturing Company (TSMC) 65 nm CMOS process and discussed with
traditional fixed-point implementations in terms of hardware performance and computation
accuracy. In addition, an analog-to-stochastic converter is designed using CMOS and magnetic
tunnel junctions that exhibit probabilistic switching behaviors for area/energy-efficient signal
conversions to stochastic bit streams.

Key Words: probabilistic computation, visual information processing, signal processing,
CMOS digital circuits, magnetic tunnel junctions

1. Introduction
Stochastic computing [1] represents information by a random sequence of bits, called a Bernoulli
sequence and has been exploited for area-efficient hardware implementation. It was first introduced
by von Neumann in 1950s [2] and had been fully developed in 1960s [3]. However, since then, it
had not been well used, unlike traditional binary computation. In 2000s, stochastic computing has
been applied to low-density parity-check (LDPC) decoders [4], where LDPC codes are known as one
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of powerful error-correcting codes. The stochastic LDPC decoders exhibit powerful error-correcting
capabilities with high area efficiencies [5–7]. Recently, it has been exploited for many applications,
such as image processers [8–10], digital filters [11–13] and MIMO decoders [14].

In this paper, we review the applications of stochastic computing in brainware (brain-like) LSI.
In our BLSI project, several hardware of brainware computing has been designed and implemented,
including physiological models and deep neural networks. In Section 2, stochastic computing is
briefly explained and the overview of brainware LSI (BLSI) is explained. Among several topics of
our BLSI design, three hardware implementations are selected: the analog-to-stochastic converter
(Section 3) [15], the simple cell model of primary visual cortex in brains (Section 4) [16–18], and the
disparity energy model (Section 5) [19]. Section 6 concludes this paper.

2. Overview of Brainware LSI (BLSI)

2.1 Review of stochastic computing

Stochastic computing performs in probabilistic domain that the probabilities are represented by ran-
dom sequences of bits. The probabilities are calculated by the frequency of ones or zeros in the
sequence that can be represented by many different sequences of bits. For example, different se-
quences of bits (1011) and (1011) mean the same probability. There are two mappings for stochastic
bit sequences: unipolar and bipolar coding. For a sequence of bits, a(t), denote the probability of
observing a ‘1’ to be Pa = Pr(a(t) = 1). In unipolar coding, the represented value, A, is A = Pa,
(0 ≤ A ≤ 1), while, in bipolar coding, the represented value, A, is A = (2 · Pa − 1), (−1 ≤ A ≤ 1).

Stochastic circuit components are summarized in Fig. 1. Figure 1(a) shows a two-input multiplier
in unipolar coding realized using a two-input AND gate. The input and output probabilities are
represented using Nsto-bit length streams, where Nsto is 10 in this example. Nsto clock cycles are
required to complete a multiplication of binary computation, where the computation accuracy depends
on Nsto . Figure 1(b) shows a stochastic multiplier in bipolar coding realized using a two-input XNOR
gate. A two-input scaled adder is realized using a two-input multiplexer shown in Fig. 1(c). Ps is a
probability of selecting one of two inputs.

In stochastic computing, hyperbolic tangent and exponential functions are simply realized using
finite state machines (FSMs), as shown in Figs. 1(d) and (e), respectively. In the FSM-based functions,
the states transit to the right, if the input stochastic bits, x(t), are “1” and the states transit to the
left, otherwise. The output stochastic bit, y(t), is determined by the current state. The stochastic
tanh function, Stanh, in bipolar coding is defined as follows:

Fig. 1. Stochastic circuit components (a) multiplier (unipolar coding),
(b) multiplier (bipolar coding), (c) scaled adder, (d) tanh function, and (e) ex-
ponential function.
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Fig. 2. Signal converter: (a) binary-to-stochastic converter (B2S) and
(b) stochastic-to-binary converter (S2B).

Fig. 3. Brainware LSI (BLSI) design based on stochastic computing that
includes analog-to-stochastic converter in Section 3, simple cell model of pri-
mary visual cortex (Gabor filter) in Section 4, and disparity energy model in
Section 5.

tanh((NT /2)x) ≈ Stanh(NT , x), (1)

where NT is the total number of states. The average values of the output bit streams are approximated
to the outputs of the tanh function. The stochastic exponential function, Sexp, is defined in unipolar
coding as follows:

exp(−2Gx) ≈ Sexp(NE , G, x), (2)
where NE is the total number of states and G determines the number of states generating outputs of
“1”.

In order to design stochastic circuits with traditional binary circuits, signal converters are required
between stochastic bit streams and binary data. Figure 2(a) shows a binary-to-stochastic converter
(B2S) including a digital comparator and a linear-feedback shift register (LFSR) [20]. In B2S, n-
bit binary signals are compared with n-bit random signals generated using the LFSR to generate
stochastic bit streams. Figure 2(b) shows a stochastic-to-binary converter (S2B) in unipolar coding
designed using a binary counter. In S2B, the number of “1” of stochastic bit streams is counted in
the counter and the stored values are binary data converted. In bipolar coding, absolute values in the
counters need to convert to two’s complement values in order to deal with the sign bit.

2.2 Brainware LSI based on stochastic computing
Recently, brain-inspired computing, such as TrueNorth [21] and deep learning [22], has been actively
studied for highly accurate recognition and classification capabilities, like human brains. Several
hardware implementations of brain-inspired computing have been presented in [23, 24], but the energy
efficiencies of the current hardware are significantly lower than that of human brains. Since 2014, in
our BLSI project, we exploit stochastic computing to design the energy-efficient brainware hardware
based on physiological models of brains. The reason to choose stochastic computing for BLSI is that
human brains can work well under severe noises and errors. Although stochastic computing generally
causes errors due to randomness, BLSIs based on stochastic computing would work well, like human
brains. Actually, a large-scale neuromorphic chip based on stochastic computing has been reported
and works well under noises [25].

Out stochastic BLSIs are summarized in Fig. 3. This figure shows flows of visual information in
human brains. First, electrical signals (information) from retinas are sent to the primary visual cortex
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(V1) through the lateral geniculate nucleus (LGN). Then, in V1, information are extracted and the
extracted information are distributed to two pathways: dorsal pathway to the middle temporal (MT)
and ventral pathway to the inferior temporal (IT).

In this paper, the hardware of several physiological models designed using stochastic computing
are reviewed. First, analog-to-stochastic converters are designed to convert external analog signals
to stochastic bit streams [15] in Section 3. Second, a 2D Gabor filter that shows similar responses
of simple cells of V1 is designed and fabricated using TSMC 65 nm CMOS technology [16–18] in
Section 4. Third, a disparity energy model in V1 is implemented, exhibiting the relative depth
estimations using two cameras, like human brains [19] in Section 5. Other than the three topics that
are not reviewed in this paper, the BLSI applications of stochastic computing have been studied for
deep neural networks [26] and auditory signal processing [27].

3. Analog-to-stochastic converter using magnetic tunnel junction (MTJ)

3.1 Vision chip using analog-to-stochastic converter
In this section, an analog-to-stochastic converter using a magnetic tunnel junction (MTJ) device is
explained for massively parallel vision chips [15]. The vision chips are front-end image processors for
feature extractions in cognitive computing as shown in Fig. 4(a), where the analog-to-stochastic con-

Fig. 4. Example of a vision chip: (a) vision chip using analog-to-stochastic
converters, (b) conventional design, and (c) proposed design.
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verter is used in the signal-conversion block. The MTJ devices [28] are often exploited as a non-volatile
memory that stores one-bit information as a resistance and are often exploited for MRAMs [29]. In
addition, as the switching behaviors between the two different resistances of MTJ devices are prob-
abilistic [30, 31], the probabilistic behaviors can be exploited for random number generators [32, 33]
and analog-to-stochastic converters.

Figure 4(b) shows a conventional circuit structure of the analog-to-stochastic converter. Using only
CMOS transistors, first, an analog-to-digital converter is used to convert from analog to digital signals
that are then converted to stochastic bit streams using a digital-to-stochastic converter (binary-to-
stochastic converter). In the conventional circuit, the power dissipation of the ADC can be a large
portion of the total power dissipation in an image sensor (e.g. 65% in [34]) and the digital-to-stochastic
converter tends to be large in the stochastic circuits. To reduce the overhead of the signal conversion
block, an analog-to-stochastic converter is designed that the analog signals are directly converted to
the stochastic bit streams as shown in Fig. 4(c).

3.2 Circuit design using hybrid MTJ/CMOS devices
Figure 5(a) illustrates the proposed analog-to-stochastic converter using the hybrid MTJ/CMOS
devices. It consists of a pulse-signal generator, a random bit generator, a counter, and a probability

Fig. 5. Analog-to-stochastic converter using CMOS and MTJ devices:
(a) circuit diagram, (b) MTJ switching by current and (c) probabilistic switch-
ing behavior.
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Fig. 6. Circuit operations of the proposed analog-to-stochastic converter at,
(a) write phase, (b) set phase, and (c) erase phase.

controller. The two parameters, t (pulse width in time) and Vbias, are set in the calibration step
before using the converter in order to compensate variabilities of MTJ and CMOS devices. Suppose
that an analog current signal is received in a logarithm image sensor that realizes a high dynamic
range [35, 36]. The random bit generator is designed using three transistors and one MTJ device.

The switching behavior of the MTJ device between low resistance (RP (parallel)) and high resistance
(RAP (anti parallel)) is probabilistic [30, 31] as illustrated in Figs. 5(b) and (c). Suppose that the
initial state of the MTJ device is RP . When the analog voltage signal, Vph, is generated from the
sensor, a write current signal, IW , is applied during t. In this case, the switching probability of the
MTJ device, pw, is approximated [30, 31] as follows :

pw ≈ 1 − exp(−t/τp), (3)

where τp is the switching time constant. The detailed switching behavior is described and modelled
in the SPICE model [37] used in this paper.

Figure 6 shows the circuit operations of the proposed analog-to-stochastic converter. The converter
iteratively operates at one of three phases: write, set, and erase. First, in the write phase, Iwrite

is generated to probabilistically switch the MTJ device at a probability depending on Vph. Second,
in the set phase, the read current, Iread, is generated to read the MTJ resistance, and the output
voltage, VR, is determined as follows:

VR =
{

High (“1”) if RMTJ = RP

Low (“0”) otherwise,
(4)

where RMTJ is the resistance of the MTJ device. VR is stored in the latch next to the converter as
shown in Fig. 5(a). Finally, in the erase phase, the erase current, Ierase, is generated to switch the
resistance back to RP . After the erase phase, the phase is back to the write phase.

3.3 Simulation results
Figure 7(a) shows simulated waveforms of the proposed analog-to-stochastic converter using NS-
SPICE in 90 nm CMOS and the MTJ model [37]. The hybrid 90 nm CMOS and MTJ process is
the same as that used in a fabricated chip of [38]. NS-SPICE is a transistor-level simulator that can
handle both the transistors and the MTJ models. The cycle time of the converter is set to 10 ns
for generating a random bit, where the write phase is 5 ns, and the set phase is 1 ns, and the erase
phase is 4 ns. In the write phase, there is a write current, Iwrite, during 4.73 ns and no current during
0.27 ns. Iwrite, is 236 μA corresponding to the switching probability, pw, of 50% at room temperature.
In this simulation, the proposed converter generates three random bits. At the first and the second
trials, the resistance of the MTJ device is changed from RP to RAP in the write phase. Hence, the
output of the converter, VOUT is “0”. In contrast, at the third trial, the resistance of the MTJ device
is not changed even if IW is applied to the MTJ device, leading to VOUT of “1”.

Figure 7(b) shows a monte-carlo simulation result of the proposed analog-to-stochastic converter in
the write phase. The number of trials is 100 and Iwrite is 236 μA corresponding to pw of 50%. The
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Fig. 7. Simulated waveforms of the analog-to-stochastic converter using
90 nm CMOs and MTJ model in NS-SPICE: (a) circuit behavior with a
write current of 236 μA corresponding to the switching probability of 50%
and (b) monte-carlo simulation with the number of trials of 100.

Fig. 8. Relationship between the switching probability and the analog input
current, Iph of the analog-to-stochastic converter: (a) the relationship depend-
ing on t when Vbias is 0.4V and Iwrite is 236 μA, and (b) the relationship with
MTJ variabilities.

simulation waveforms show that the switching behavior of the MTJ device is probabilistic and the
switching timing is random. In this simulation, the resistance of the MTJ device is changed from RP

of 1 kΩ to RAP of 3 kΩ at 50% after writing a bit to the MTJ device.
Figure 8(a) shows a relationship between the switching probability, pw and the input current, Iph,

when Vbias is 0.4 V and Iwrite is 236 μA. The attempt time, t, varies from 1 to 10 ns. When t is
4.73 ns, the relationship between pw and Iph is almost linear, realizing the linear analog-to-stochastic
conversion. In addition, the MTJ variabilities are considered as shown in Fig. 8(b). In order to
compensate the MTJ variability, two parameters, Vbias and t, are set in the calibration step. The
resistance variability is defined by ΔR. To control both Vbias and t, the relationships between the
switching probabilities and the Iph are almost linear under the MTJ variability.
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4. Stochastic configurable 2D Gabor-filter chip

4.1 Review of Gabor filter
Gabor filters [39] are powerful feature-extraction tools that extract oriented bars and edges of images.
They have been applied for various image processing and computer vision applications, such as face
recognition [40] and vehicle verification [41, 42]. The 2D Gabor function (odd phase) is defined as
follows:

gω,σ,γ,θ(x, y) = exp
(
−x′2 + γ2y′2

2σ2

)
sin(2ωx′), (5)

where x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ. ω represents the spatial angular frequency
of the sinusoidal factor. θ represents the orientation of the normal to the parallel stripes of a Gabor
function. σ is the sigma and γ is the spatial aspect ratio of the Gaussian envelope.

The 2D Gabor filters exhibit similar responses of simple cells in primary visual cortex (V1) of
human brains as shown in Fig. 9. In V1, many different simple cells activated with specific spatial
frequencies and angles of images are placed as the hypercolumn structure. Based on the hypercolumn
structures, human brains can extract many different features, such as edges and lines of images for
object recognitions and classifications in the latter part of brains. HMAX model is known as one of
the brain-inspired object recognition models using Gabor filters [43].

4.2 Hardware architecture
Figure 10 shows a hardware architecture of the proposed 64 parallel stochastic configurable 2D Gabor-
filter chip. The input image sizes are VGA (640 x 480) with grayscale. As stochastic computation

Fig. 9. Hypercolumn structure in V1 including many simple cells, which are
activated at specific angles and spatial frequencies. Gabor filters exhibit similar
responses of the simple cells.

Fig. 10. Architecture of 64-parallel stochastic 2D Gabor-filter chip.
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Fig. 11. Block diagram of coefficient generator: (a) SGabor function and
(b) Ssin function with ω′ = π.

takes Nsto clock cycles to complete one computation based on traditional binary implementation,
the parallel structure is exploited to hide long computation cycles. 8-bit input signals (pixels) from
grayscale images are stored in the line buffer and are then transferred to one of the 64 parallel
stochastic convolution units. In this chip, there are three cases of Nsto: 64, 128, and 256. In the
convolution block for Gabor filtering, the multipliers are realized based on stochastic computing and
the adders are designed based on traditional binary computation. The hybrid circuit achieves a better
computation accuracy than the purely stochastic circuit with an acceptable area overhead [44].

Figure 11(a) shows the block diagram of the stochastic Gabor coefficient generator. The coefficient
generator is designed based on the stochastic Gabor (SGabor) function defined as follows:

SGabor(ω, γ, λ,G, θ, x, y) =
Sexp

(
NE , G, 1

2(x′2 + +γ2y′2)
)

+ 1

2
Ssin(ω, λ, x′),

(6)

x′ = x Scos(π, λπ, θ/π) + y Ssin(π, λπ, θ/π),

y′ = −x Ssin(π, λπ, θ/π) + y Scos(π, λπ, θ/π),

Ssin(ω, λ, x) =
�ω′

π �∑
k=�−ω′

π �
(−1)k Stanh

(
4ω′,

1
2
(
λx +

πk

ω′
))

, (7)

Scos(ω, λ, x) =
�ω′

π − 1
2 �∑

k=�−ω′
π − 1

2 �
(−1)k Stanh

(
4ω′,

1
2
(
λx +

π(k + 1
2)

ω′
))

, (8)
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where ω′ is a constant angular frequency and λ is ω/ω′ and λπ is constant. The original Gabor
function on Eq. (5) is approximated as follows:

αgω,σ,γ,θ(x, y) ≈ SGabor(ω, γ, λ,G, θ, x, y), (9)

where α is a constant value for fitting SGabor with the original Gabor function. The stochastic sin
function, Ssin, is designed using five Stanh functions based on [16] as shown in Fig. 11(b). Figure 11(b)
shows the example with ω′ = π. ω required is controlled by λ. The stochastic cos function, Scos, is
designed as well as Ssin.

4.3 Simulation and measurement results
Figure 12 shows simulated Gabor functions using SGabor for a kernel size of 51x51 with different
configurations using MATLAB. The length (cycle) of stochastic bit streams for SGabor is defined as
Nsto . In this simulation, ω and θ are changed with Nsto = 218. Using SGabor, any ω and θ can be
configured depending on requirements.

Figure 13 shows the test environment of of the proposed stochastic 2D configurable Gabor-filter
chip using TSMC 65 nm CMOS process. The proposed circuit is designed using Verilog HDL and the
chip layout is obtained using Synopsys Design Compiler and Cadence SoC Encounter. The supply
voltage is 1.0 V and the area is 1.79 mm × 1.79 mm. The fabricated chip is tested with an FPGA
(Digilent Genesys 2) board. Images are captured by a camera (VGA) and the input pixels in grayscale
are transferred to the chip through the FPGA. The output pixels of the test chip are sent back to
the FPGA and are displayed using the FPGA.

Table I shows performance comparisons of the proposed stochastic Gabor filter with related works.
It is hard to directly compare the performance because they are designed with different functionalities
and configurations. The memory-based methods [45, 46] use fixed coefficients with fixed kernel sizes
that are calculated in software in advance, causing the lack of flexibility. As opposed to the memory-
based circuits, in the conventional configurable Gabor filter [47], CORDIC is exploited to dynamically
generate the coefficients related to sinusoidal function for flexible Gabor filtering. However, this

Fig. 12. Simulated SGabor function with different configurations.

Fig. 13. Test environment of the fabricated chip of the 64-parallel stochastic
2D Gabor filter using TSMC 65 nm CMOS.
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Table I. Performance comparisons of Gabor filters.

[45] [46] [47] This work

Computation Analog/Digital Digital Digital Stochastic
Technology 0.35 μm CMOS (FPGA) 0.13 μm CMOS 65 nm CMOS
Kernel size (Only nearest 3x3 3x3, 5x5, 7x7, NxN (flexible)

neighbor) 9x9, 11x11
Kernel parameter Fixed Fixed Flexible Flexible

Power-gating capability No No No Yes
# of processing elements 61x72 1 1 64

Throughput (MP/s) - 124.4 (3x3) 10 (5x5) 200 (5x5)
2.1 (11x11) 40 (11x11)

Frequency [MHz] 1 148.5 250 200
Power dissipation [mW] 800 - - 102.3

Fig. 14. Estimation of the relative depths of objects: (a) relation between
disparity and depth, and (b) disparity energy model using simple cells (S) and
complex cells (C).

method is low throughput due to the hardware complexity and several parameters need to be stored
in memory, losing the power-gating capability. In contrast, the proposed memory-less circuit achieves
an order-of-magnitude higher throughput than the conventional configurable Gabor filter with the
power-gating capability, leading to zero standby power.

5. Stochastic disparity energy model

5.1 Review of disparity energy model
Measuring the relative depth of objects efficiently in real-time is a crucial issue as advances in robotics.
A disparity-energy model was presented to express the disparity-selective properties of binocular
complex cells in V1 that are responsible for depth perception in brains [48]. In the disparity-energy
model, binocular disparity measures the depth of objects using two images taken from different vantage
points, and is defined as the difference in horizontal positioning of the same object in these two images.
This model was used to be valid in monkeys [49] and to describe well the response of binocular complex
cells in V1 [50].

When an object is perceived from the left and right eyes, its position is horizontally displaced in
each of the corresponding images, as illustrated in Fig. 14(a). The brains use this horizontal disparity,
d, to estimate the relative depths of objects in three dimensions. Positive and negative disparities
(corresponding to farther and closer objects) consequently excite different retinal cells in each eye.
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Zero disparity corresponds to those objects whose positions are the same from both perspectives and
excites corresponding retinal cells in each eye.

Figure 14(b) shows the disparity-energy model that shows how the neural hierarchy in the brain
processes this information to detect disparity [48, 51, 52]. The simple cells are approximated using
Gabor filters explained in the prevision section. The complex cells Cd then take the even and odd
binocular cell responses and squares and adds them:

Cd(xL, xR) =
(

Geven+

(
xL +

d

2

)
+ Geven+

(
xR − d

2

))2

+
(

Geven−

(
xL +

d

2

)
+ Geven−

(
xR − d

2

))2

+
(

Godd+

(
xL +

d

2

)
+ Godd+

(
xR − d

2

))2

+
(

Godd−

(
xL +

d

2

)
+ Godd−

(
xR − d

2

))2

(10)

xL and xR are the horizontal pixel positions for the left and right eye, respectively. Geven+(x) =
Geven(x) if x > 0, and 0 otherwise. Geven−(x) = Geven(x) if x ≤ 0, and 0 otherwise. There are two
ways of encoding disparity in the model: position shift and phase shift [53]. In this paper, we only
use position shift, where d is defined by the difference in position of the receptive field.

5.2 Stochastic convolution architecture
Key circuit components for designing the disparity energy model are convolution units used in Gabor
filtering. The convolution is defined as follows:

z =
∑

i

aixi, (11)

where ai is the coefficients and xi is the system inputs. Figure 15(a) shows a conventional stochastic
architecture of convolution units. It consists of AND gates (stochastic multiplier) and a multiplier

Fig. 15. Stochastic convolution circuits: (a) conventional and (b) proposed.
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(stochastic scaled adder). The drawback of this circuit is that the computation accuracy is significantly
lower when the number of inputs, n, is increased. In the Gabor filters of the disparity energy model,
7×7 kernel sizes are used to extract features. In this case, n is 49, causing a low computation accuracy.

To achieve a high computation accuracy with a large number of inputs, the exponential based
convolution circuit was presented as shown in Fig. 15(b). In the proposed circuit, the exponential
compression method transforms the stochastic streams of interest using an exponential function, such
that additions become multiplications [54]. The exp(x) and ln(x) functions are approximated using
Taylor series expansions. Suppose that ai and xi have been properly scaled such that |xi| ≤ 1 and
|ai| ≤ 1. The set ai of coefficients is partitioned into a set ai+ containing the positive coefficients,
and a set ai− containing the absolute values of the negative coefficients.

5.3 Experimental results of disparity energy model
To detect the depths of objects, an experiment is setup that is similar to [50] as shown in Fig. 16. The
two cameras are setup 19-cm apart, where 8-degree angle from the vertical is realized. The fixation
point that is the point at the intersection of the line of sight of each camera is 66 cm away. At this
range, disparities correspond to around 3 cm per pixel. One white pole is placed on the fixation point.
To detect disparities of −8 and +8, two white poles are also placed at a distance of 42 and 90 cm,
respectively, from the cameras center.

Figure 17 shows the disparity maps for the floating-point, the conventional stochastic and the
proposed stochastic circuits. The lengths of stochastic bit streams are 26 − 1 corresponding to a

Fig. 16. Experimental setup to detect disparity.

Fig. 17. Disparity maps using: (a) floating point, (b) conventional stochastic
circuit, and (c) proposed stochastic circuit.
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Table II. Performance comparisons of disparity-energy-model hardware us-
ing TSMC 65 nm CMOS process.

Fixed-point Stochastic
(6-bit) (w/o interface) (w/ interface)

Area [mm2] 10.22 0.308 0.639
Delay [ns] 592 5,448 5,448

Area × delay product (ADP) 5,886 1,679 3,453

Dynamic power [mW] 776.3 43.4 152.2
Static power [mW] 41.7 0.8 1.8

Energy [nJ] 484 241 839

Average error 16.4 14.2
(min, max) - (8,9, 22)

6-bit fixed-point precision. To quantify the errors, we obtain 4 additional image pairs with poles
at different disparities using a similar setup and manually create ideal disparity maps depending on
the position and dimensions of the poles from the left and right images to estimate the error. Using
the conventional stochastic circuit, the disparities are not obtained, unlike the floating-point result.
The reason is that the computation accuracy of the stochastic convolution unit shown in Fig. 15(a).
is significantly lower than the floating point. In contrast, using the proposed stochastic circuit, the
similar disparities to the floating-point results is obtained because of the high computation accuracy
of the exponential based convolution unit.

5.4 Hardware evaluation
Table II summarizes the performance of disparity-energy-model hardware using TSMC 65 nm CMOS
technology. For both fixed-point and stochastic circuits, a 2D 1×100 architecture is synthesized using
Cadence RC compiler. The worst-case delay is 5.5 ns and 1.7 ns in the fixed-point and the stochastic
circuits, respectively. In the fixed-point design, the interface circuitry includes the input and output
registers. In the stochastic design, it includes input registers, linear feedback shift registers (LFSRs)
for random number generation, comparators and counters to convert from digital to stochastic domain
and back.

To provide a fair comparison, we use the area × delay product (ADP) measure to normalize for
latency of the stochastic system. Note that such a stream length allows outperforming the floating-
point system even when the performance is averaged over the seed configurations. The stochastic
circuit with the interface circuitry achieves a 41.3% reduction in ADP in comparison with the fixed-
point circuit.

The dynamic and the static power dissipations of the stochastic design are significantly smaller
than that of the fixed-point design because of the small area. However, the energy dissipation with
the interface is 73% larger than the fixed-point design. The reason is the stochastic circuits take 26−1
cycles for a one-cycle operation of the fixed-point design. The energy overhead also comes from the
interface that includes binary-to-stochastic and stochastic-to-binary converters. The overhead can be
mitigated using MTJ-based converters explained in Section 3.

The average error of the stochastic design is slightly smaller than that of the fixed-point design.
As the stochastic circuits exhibit the variability of computation accuracy depending on random bit
streams, the minimum and the maximum computation accuracies are also listed.

6. Conclusion
In this paper, we have reviewed the applications of stochastic computing in brainware for visual
signal processing. The two physiological models in V1 of the human brains have been implemented in
TSMC 65 nm CMOS process. The hardware performance is compared and discussed with that of the
fixed-point design with the computation accuracy. In addition, the area-efficient analog-to-stochastic
converter has been designed in order to mitigate the signal-conversion overhead to the stochastic bit
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streams from external analog signals.
Future prospect includes the application of stochastic computing for models of higher order visual

cortex, such as visual attention models.
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