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Abstract Implementing neuromorphic algorithms is
increasingly interesting as the error resilience and low-
area, low-energy nature of biological systems becomes
the potential solution for problems in robotics and arti-
ficial intelligence. While conventional digital methods
are inefficient in implementing massively parallel sys-
tems, analog solutions are hard to design and program.
Stochastic Computing (SC) is a natural bridge that allows
pseudo-analog computations in the digital domain using
low complexity hardware. However, large scale SC systems
traditionally suffered from long latencies, hence higher
energy consumption. This work develops a VLSI archi-
tecture for an SC based binocular vision system based on
a disparity-energy model that emulates the hierarchical
multi-layered neural structure in the primary visual cortex.
The 3-layer neural network architecture is biologically
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plausible and is tuned to detecting 5 different disparities.
The architecture is compact, adder-free, and achieves better
disparity detection compared to a floating-point version
by using a modified disparity-energy model. A general-
ized 1x100 pixel processing system is synthesized using
TSMC 65nm CMOS technology and it achieves 71 %
reduction in area-delay product and 48 % in energy savings
compared to a fixed-point implementation at equivalent
precision.

Keywords Stochastic computing · Neuromorphic
computing · Approximate computing · Gabor filters ·
Disparity-energy model · Computer vision · Biomedical
electronics · Neural networks

1 Introduction

Measuring the relative depth of objects efficiently in real-
time is a crucial issue as advances in robotics and arti-
ficial intelligence lead to ever smaller and more versatile
devices with constrained resource budgets. Compared to
conventional real-time image processing hardware imple-
mentations, biological vision achieves considerable power
efficiency with high error resilience. Neuromorphic engi-
neering aims to build hardware that exhibits these properties
by taking inspiration from the structures and algorithms
of biological systems. Ohzawa et al. proposed a disparity-
energy model to express the disparity-selective properties of
binocular complex cells in the primary visual cortex (V1)
that are responsible for depth perception in the brain [19].
Binocular disparity measures the depth of objects using two
images taken from different vantage points, and is defined
as the difference in horizontal positioning of the same object
in these two images [22]. This model has been shown to be
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valid in monkeys [10] and to describe well the response of
binocular complex cells in V1 [23].

Several analog and mixed-signal VLSI vision chip imple-
mentations exhibiting low power and high area efficiency
have been proposed [9, 15, 23]. These chips rely on analog
transistor behavior to emulate the receptive field responses
of neurons in V1. However, it is difficult to design highly-
programmable analog circuits to describe higher-order neu-
ral behaviors compared to the digital counterparts [23].
Also, they do not scale easily to newer technology nodes
and are sensitive to manufacturing variations. This moti-
vates us to find digital implementations that exhibit similar
characteristics to that of analog circuits. Stochastic com-
puting (SC) bridges this gap by performing pseudo-analog
operations in the digital domain.

This paper describes the VLSI implementation of a
multi-layered neural network for the disparity-energy model
using SC. Layer 1 of the network performs difference-of-
Gaussian filtering that mimicks the center-surround recep-
tive fields (RF) in the retina, layer 2 performs Gabor
filtering mimicking the orientation selective filtering per-
formed by the receiptive fields of the simple cells and layer
3 has simple and complex cells tuned to detecting 5 dif-
ferent disparities. We use exponential compression [11] to
transform stochastic streams into the exponential domain
where less precise stochastic additions are converted to pre-
cise stochastic multiplications, resulting in an adder-free
architecture.

Section 2 first reviews SC and the disparity-energy
model, then Section 3 presents a modification to the
SC exponential compression technique [11]. Section 4
presents the proposed system architecture. Implementation
results are given in Section 5, Section 6 presents details
of a configurable architecture and Section 7 concludes
the paper.

2 Background Material

2.1 Disparity-energy Model

When an object is perceived from the left and right eyes, its
position will be horizontally displaced in each of the cor-
responding images, as illustrated in Fig. 1. The brain uses
this horizontal disparity, d , to estimate the relative depths of
objects in three dimensions [19]. Zero disparity corresponds
to those objects whose position is the same from both per-
spectives and excites corresponding retinal cells in each eye.
Positive and negative disparities (corresponding to farther
and closer objects) consequently will excite different retinal
cells in each eye [23].

Figure 1 Relation between disparity and depth [4].

The disparity-energy model shown in Fig. 2 explains how
the neural hierarchy in the brain processes this information
to detect disparity.

In this work, we implement a pre-processing difference-
of-gaussian (DOG) filtering stage (not shown in Fig. 2)
along with the disparity-energy model. Layer 1 has 2xN
two-dimensional (2D) DOG filters that pre-filter the left and
right images, where N is the number of pixels in one input
image. Layer 2 has 2xN 2D Gabor even and 2xN 2D Gabor
odd filters that filter the left and right images. A layer of
Gabor even and Gabor odd filters are tuned to detect a single
orientation in an image. In this work, only one layer is used,
tuned to detect vertical edges only. Layer 3 is composed of
5 disparity groups, where each disparity group is composed
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Figure 2 Disparity-energy model [19] showing simple (S) and com-
plex (C) cells.
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of 4xN simple cells and 1xN complex cells that combine the
Gabor responses from the left and right images to detect one
disparity level. A disparity group tuned to detect disparity
level d merges Gabor responses from pixel positions from
left and right images, having a relative horizontal distance
of d . The following sections explain each of the filters in
more detail.

2.1.1 DOG Filtering

Before being fed into the disparity-energy model, the image
is first pre-processed by the retinal cells that have a con-
centric center-surround receptive field (RF), i.e. a positive
center and negative surround (ON-center) or a negative cen-
ter and positive surround (OFF-center). Figure 3a presents
an ON-center DOGRF. ADOG cell fires a positive response
when a stimulus falls in the center region and fires a negative
response when a stimulus falls in the surround region. This
behavior allows for edge enhancement to ease orientation
selectivity in the simple cells stage.

The Difference of Gaussian (DOG) filter [17] approxi-
mates the 2DMexican hat wavelet given by

ψ(x, y) = − 1

πσ 4

(
1 − x2 + y2

2σ 2

)
e
−

(
x2+y2

2σ2

)
. (1)

2.1.2 Receptive Fields (RFs) of Simple Cells

Receptive fields of simple cells are located in the left and
right eyes. The pre-processed images are fed to these ori-
entation selective spatial RFs, which can be approximated
using Gabor filters. 1D Gabor filters are shown below:

Geven(x) = 1√
2πσ 2

e
− x2

2σ2 cos (2πw0x) , (2)

Godd(x) = 1√
2πσ 2

e
− x2

2σ2 sin(2πw0x). (3)

Phase of the even (2) and odd (3) Gabor filters differs by 90
degrees as shown in Fig. 3b and c. These receptive fields are
tuned to respond to edges of a specific orientation and filter
out the rest.

(a) (b) (c)

Figure 3 Receptive fields.

2.1.3 Simple and Complex Cells

The even and odd Gabor RF responses from each eye con-
verge onto binocular simple cells. The complex cell Cd then
takes the even and odd binocular cell responses and squares
and adds them [23]:

Cd(xL, xR) =
(

Geven+
(

xL + d

2

)
+ Geven+

(
xR − d

2

))2

+
(

Geven−
(

xL + d

2

)
+ Geven−

(
xR − d

2

))2

+
(

Godd+
(

xL + d

2

)
+ Godd+

(
xR − d

2

))2

+
(

Godd−
(

xL + d

2

)
+ Godd−

(
xR − d

2

))2

. (4)

In Eq. 4, xL and xR are the horizontal pixel positions for the
left and right eye respectively. Geven+(x) = Geven(x) when
x > 0 and 0 otherwise. Geven−(x) = Geven(x) when x < 0
and 0 otherwise. Gabor odd functions are defined similarly.
There are two ways of encoding disparity in the disparity-
energy model: position shift and phase shift [22]. In this
work, we only use position shift, where d is defined by the
difference in position of the receptive field.

In our implementation, we use the original disparity-
energy model introduced in [19], see Fig. 2, which uses
simple cells that cannot fire negative responses. Hence, this
model has four simple cells where each pair handles the pos-
itive and negative streams separately. Some other work such
as [22, 23] used an equivalent model where the simple cell
handles both positive and negative numbers, reducing the
number of simple cells to two.

2.2 Stochastic Computing

In SC, numbers are represented using random bit streams.
We denote by Px the probability that a bit in the stream is a
1. A unipolar SC encoding can represent a value x ∈ [0, 1]
by choosing Px = x and a bipolar encoding can represent a
value x ∈ [−1, 1] by choosing Px = (x + 1)/2. For exam-
ple, a stream of 8 bits in unipolar encoding will represent
x = 0.5 when 50 % of the bit stream is composed of ones
and 50 % of zeros. SC allows for very simple circuit imple-
mentations of complex functions [6, 13]. As an example,
Fig. 4 shows the multiplication of two independent stochas-
tic streams using an AND gate and scaled addition using
a multiplexer. Since SC cannot represent numbers greater
than 1, a multiplexer scales the output by 2 to represent the
sum as a stochastic stream.

Typically, numbers in conventional binary encoding are
converted to stochastic streams by comparing the number
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Figure 4 SC multiplication and scaled addition.

with a sequence of uniformly-distributed random numbers,
see Fig. 5. Linear feedback shift-registers (LFSRs) are usu-
ally used to generate the sequence of random numbers due
to their ease of design, but any other source can be used.
To convert 0.3 into a unipolar stochastic stream with 5-bit
equivalent unsigned fixed-point precision, we use a 5-bit
LFSR to generate the 25 − 1 uniform random sequence.
0.3 in unsigned number representation is “01001”. At each
clock cycle, a comparator compares “01001” with the LFSR
output and generates a stream where Px = 0.3. Such
streams are then processed using stochastic circuits (e.g.
as in Fig. 5) and converted back to binary numbers using
counters that accumulate the bit stream for 25−1 cycles [6].

Since SC uses bit streams where the position of a bit in
the stream is inconsequential, it allows for graceful degra-
dation in the presence of errors, in contrast to binary circuits
[13]. This ability can be exploited by allowing errors in
transistor operation, for example by voltage overscaling, to
potentially further minimize power consumption.

In recent years, the field of SC has progressed rapidly
and has demonstrated several practical implementations
for applications ranging from LDPC decoders [12, 24],
to image processing [2, 13] and neural network imple-
mentations [6]. These applications generally achieve good
performance with relatively low-precision at corresponding
stochastic stream lengths. However, a wider range of appli-
cations, especially ones requiring multiple stages with large
number of parallel computations suffer from long latencies
due to high precision requirements. Stochastic multiplica-
tion is very area efficient and precise whereas stochastic
scaled addition is not. For every two terms added, due to the
scaling involved in multiplexer based addition, precision is

Figure 5 Stochastic number generator (SNG) for x = 0.3.

severely reduced; leading to rapid precision loss when many
numbers need to be added in the stochastic domain. This is
usually compensated by very long stream lengths thereby
increasing latency and energy consumption. For example,
[16] implements a 5x5 Gaussian convolution on an image
using standard multiplexer based SC addition which we esti-
mate required stream lengths of at least 216 − 1 as per the
16-bit precision requirement stated for the binary digital
system.

Several approaches have been explored in literature to
improve the precision of SC addition. Chang and Parhi [7]
explore a novel multiplexer based SC addition technique
that relies on scaling the output with the total sum of input
coefficients instead of a standard scaling factor of 0.5. Ref-
erence [25] presents a hard-wired weighted average (HWA)
adder for FIR filters, that duplicates a specific input to sev-
eral ports of the multiplexer depending on the weight of the
input coefficient. The bundleplexer method from [8] uses a
novel wire selection scheme similar to [25], but using only
wires leading to significant energy savings. The modified
signed stochastic adder designed in [14] defines the desired
scaled adder behaviour in a truth table and derives the cir-
cuit. This method achieves exact results for a scaled adder
by adding the bit streams deterministically.

However, a majority of these multiplexer-based designs
inherently scale, reducing precision as large number of
inputs are added. Further, in contrast to fixed-point arith-
metic, multiplexer-based stochastic adders are much larger
than stochastic multipliers, causing designs built using
stochastic adders to have a large area-delay product. Rather
than using a multiplexer-based design, we chose the SC
exponential compression method presented in [11]. This
method allows an arbitrary number of terms to be added
with less precision loss, significantly reducing the required
length of the stochastic stream while supporting a low area-
delay product. We expand upon the method in Section 3
to improve its accuracy and thereby enable the design of
low latency multi-stage stochastic circuits. One important
tool that enables this result is the use of correlation in SC
computations.

2.2.1 Correlation

Traditionally, stochastic circuits rely on uncorrelated bit
streams to perform computations. Two streams are uncor-
related when two independent random number sequences
are used to convert two inputs into stochastic streams. Sim-
ilarly, two streams are maximally (positively) correlated
when the same random number sequence is used to convert
two different inputs into stochastic streams.

As correlation increases between streams, the accuracy
of most SC circuits decreases and hence they are usu-
ally carefully designed to avoid it. But, [1] discovers that
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Figure 6 Exponential compression illustration.

changing correlation actually changes the stochastic
behaviour of logic circuits and introduces a novel frame-
work to analyze and quantify this correlation to design SC
circuits that are small and accurate. As an example, the
same AND gate which performs SC multiplication with
uncorrelated streams, behaves as a minimum function when
streams are positively correlated. Of interest is the XOR
gate which implements an absolute-valued subtraction with
positively correlated inputs [1]. This behaviour is exploited
in Section 3 to improve accuracy of the SC exponential
convolution architecture.

3 Stochastic Computing Convolution Architecture

The exponential compression method illustrated in Fig. 6
transforms the stochastic streams of interest using an expo-
nential function, such that additions become multiplications
[11]. The exp(x) and ln(x) functions are approximated
using Taylor series expansions.

To implement the filters presented in Section 4, we must
evaluate

z =
∑

i

aixi, (5)

where ai are the coefficients and xi the system inputs. The
corresponding stochastic circuit is shown in Fig. 7.

We assume that ai and xi have been properly scaled such
that |xi | ≤ 1 and |ai | ≤ 1. The set {ai} of coefficients is par-
titioned into a set {a+

i } containing the positive coefficients,

xe−

xe−

xe−

xe−

−−ze

+−ze

Figure 7 Exponential convolution architecture.

and a set {a−
i } containing the absolute values of the negative

coefficients. Equation 5 can be rewritten as

z =
∑

i

a+
i xi−

∑
i

a−
i xi =

∑
i

y+
i −

∑
i

y−
i = z+−z−. (6)

We also assume that
∑

a−
i xi ≤ 2 and

∑
a+
i xi ≤ 2. Positive

and negative summations have to be constrained to ensure
the terms are within range in the stochastic domain. These
summations can be greater than 1 because the first order
Taylor approximation of ln(x) scales the result down by 2;
so we can double the input coefficients and still stay within
[0,1] range. Since these summations are calculated in the
exponential domain, the compressed sum stays in the [0,1]
range.

We first perform the multiplications in Eq. 6 using AND
gates to obtain y+

i = a+
i xi and y−

i = a−
i xi . To eval-

uate
∑

i y+
i , we compress the individual streams {y+

i } as

{e−y+
i }. The exponential compression can be approximated

by a Taylor order 1, 2 or 3 approximation and the circuits
are presented in [11].

The resulting set of compressed streams are multiplied
together:∏

e−y+
i = e− ∑

y+
i = e−z+

. (7)

The {y−
i } streams are treated similarly. We obtain z+/2

from e−z+
, when we invert the exponential transformation

by using a first order Taylor approximation of the natural
logarithm:

z+/2 ≈ 1 − e−z+
, (8)

and similarly for z−/2.
Now, instead of accumulating for z/2 with an up-down

counter fed by Z+ and Z− (where E[Z+] = z+/2 and
E[Z−] = z−/2), to allow further stochastic processing, we
transform the streams into Zpos and Zneg:

Zpos = Z+(1 − Z−), Zneg = Z−(1 − Z+). (9)

Note that Zpos + Zneg is the exclusive-or of Z+ and Z−.
When the streams Z+ and Z− are maximally correlated,
the circuit with outputs Zpos and Zneg implements absolute
valued subtraction. E[Zpos] and E[Zneg] become

zpos ≈
{

z+−z−
2 if z+ > z−,

0 otherwise
zneg ≈

{
z−−z+

2 if z− > z+,

0 otherwise.

(10)

Finally, E[Z] = z/2 = zpos−zneg. Note that zpos and zneg
represent the positive and negative axis values respectively
of z/2. The positive and negative streams never simultane-
ously take a non-zero value; a property that allows re-use of
stochastic streams for further processing.

Figure 8 shows SC addition using exponential compres-
sion order 1 with stream length of 28 − 1. The 8 inputs are
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Figure 8 8-input SC addition with stream length 28 − 1.

split into 4 positive and 4 negative pairs randomly gener-
ated and sum to an increasing value of Z. Figure 8a shows
overlayed plots comparing the stochastic and floating-point
results. Figure 8b shows the output of E[Z+] and E[Z−]
from Eq. 8 before subtracting the streams from each other.
As can be seen, E[Z] cannot be interpreted individually
by either stream. After Eq. 10 with maximum correlation
between Z+ and Z−, Fig. 8d shows E[Zpos] and E[Zneg]
becoming mutually exclusive values, representing the posi-
tive and negative axis values of z/2. Comparing Fig. 8d with
Fig. 8c, we see that without employing correlation, values in
Fig. 8c are not yet mutually exclusive. Maximal correlation
can be arranged by using a single noise source to generate
all the xi streams, and the same noise source for each pair
of (a+

i , a−
i ).

Figure 10a plots the Taylor series expansions of order 1,
2, and 3 to the exponential function. Taylor order 1 is a poor
approximation for large numbers, but is reasonably accu-
rate for |x| < 0.3. As the expected value of the streams
increases, higher order approximations can be used [11].
Figure 10b shows the result of two-number addition with
values ranging from -0.5 to 0.5 for the proposed expo-
nential compression method and the original method from
[11], compared with exact addition. In this work, a first
order expansion was sufficient to detect disparity. Accu-
racy of a 2-input adder can be improved by increasing the
order of the exp(x) transformation only [5, 11]. Please refer
to [5] for a discussion on the area overhead incurred as
different Taylor order approximations are used for exp(x)

while implementing an SC system using the exponential

−−ze

+−ze

−−ze

+−ze

(a)

(b)

Figure 9 Differences in decompression architecture.

compression technique. Note that a first-order Taylor
approximation simply corresponds to using an OR gate as
an SC adder.

Note that our proposed implementation of exponential
compression is different from [11], as we do not include
an S-R latch at the output (see Fig. 9). It can be seen from
the plots in Fig. 10 that using the S-R latch leads to less
precise addition. The hold state of the S-R latch quickly sat-
urates the stream towards 0 or 1, disallowing representation
of intermediate numbers. As a result, we have reformulated
the mathematical description from [11] to yield a better
approximation.

To summarize, we improved the exponential compres-
sion technique by removing the S-R latch, increased accu-
racy by exploiting correlation and used the separated posi-
tive and negative streams to allow for multi-stage stochastic
architectures.
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Figure 10 Taylor approximations.
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4 System Architectures

A previously proposed system architecture presented in [5],
referred herein as the 1D system architecture, used 1D
Gabor filters to mimic the receptive fields for simple cells.
These are weakly orientation selective compared to 2D
Gabor filters. The previous hardware implementation could
detect vertical edges only, and it is difficult to change the
orientation of the 1D convolver to detect arbitrary angles.

To address these issues, we improved the architecture in
several ways. Firstly, 1D 1x9 Gabor filters are upgraded to
2D 7x7 Gabor filters to enhance orientation selectivity and
make the architecture reusable. Secondly, Gabor odd fil-
ters are removed and its response is approximated using a
method of pixel subtraction [23] to save area.

4.1 Generalized Fully Parallel System Architecture

The proposed architecture implements a three-layer fully
parallel 1x100 pixel processing circuit to detect 5 dif-
ferent disparity levels: [−8, −4, 0, 4, 8]. This architecture
was inspired by [23] but we instead implement the system
using stochastic computing. The 2D stochastic processing
architecture is shown in Fig. 11.

The first stage, concentric center-surround RF, is imple-
mented with a 2D DOG filter using a 5x5 kernel, with
coefficients generated using Eq. 1 with σ = 0.75, x =
[−2, 2] and y = [−2, 2]. The second stage, orientation-
selective Gabor 2D even filter coefficients are generated
using:

Geven(x, y) = exp

(
−X2 + γ 2Y 2

2σ 2

)
cos

(
X
2π

λ

)
, (11)

where X = x cos θ −y sin θ , Y = x sin θ +y cos θ , λ = 3.5,
σ = 2.8, γ = 0.3, θ = 0, x = [−3, 3] and y =
[−3, 3] [18] and the coefficients are scaled as per Section 3.

Figure 11 System diagram for generalized stochastic implementation.

The filtering stages are implemented using the stochastic
exponential compression technique. As a result, each fil-
tering stage takes a single stochastic stream as input and
outputs a positive and a negative stream. The processing can
be decomposed into the following steps (step numbers are
also shown in Fig. 11):

1. The 1x100 pixel processing system takes 11 consec-
utive rows of 110 pixels shifted by 1 every clock
cycle.

2. There are 7 2D 5x5 DOG filters processing 11 rows
in parallel. The DOG filters then output a 7x106 pixel
stream to 2D 7x7 Gabor even filters.

3. There are 2 Gabor even 1x100 filters implemented in
parallel for each eye to process the positive and negative
streams from the DOG filters separately.

4. An approximating circuit then takes the Gabor even
processed streams to calculate the Gabor odd response
without needing another 2D convolution.

5. The resulting streams are merged to have single positive
and negative streams for all 1x100 pixels.

6. The streams finally feed into the last stage of the circuit
shown inside the dashed box, that contains binocular
simple and complex cells tuned to detect one disparity
level. Overall, the single pixel processing stochastic cir-
cuit has 5 disparity groups (not shown) to detect the 5
disparity levels in parallel.

4.1.1 Gabor 2D Even Filters

The positive and negative 7x106 stochastic streams from the
stochastic DOG filters are processed separately using unipo-
lar stochastic Gabor even filters. After this second stage of
filtering, each processed pixel is separated into four separate
streams that we denote ++, −−, +− and −+. We com-
bine ++ with −− into a first stream called even+, and +−
with −+ into a second stream called even−. The even+
and the even− stream represent respectively the positive and
negative axis response for the Gabor even filtered pixel.

Gabor even and odd filters tuned to 90 degrees respond
maximally to vertical edges and show weakened response
to increased angular orientation. To test the system, bars
oriented at angles varying from 0 to 180 degrees were pre-
sented. We summed the absolute value of the pixels forming
the processed bar as a measure of the filter’s response to
various orientations. These results are normalized over all
responses and presented in Fig. 12 for stochastic implemen-
tation with stream lengths of 25 − 1 bits. The stochastic
results are compared with a 2D floating-point, 6-bit fixed-
point and the 1D floating-point [5] implementations. 6 bits
is the minimum possible bit length where most of the filter
coefficients can still be represented.
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Figure 12 Orientation selectivity curves for 2D Gabor even
responses.

All implementations can be seen to show similar and
sharper orientation selectivity compared to the 1D counter-
part.

Using 2D Gabor filters brings the implementation a step
closer to a configurable system that can detect arbitrary
orientations by simply swapping different Gabor kernels
without any hardware changes.

4.1.2 Gabor 2D Odd Filters

A Gabor odd response can be derived from a Gabor even
response by subtracting alternate pixels row-wise, processed
by Gabor even filters [23].

Godd(i) = 1

2
(Geven(i +1)−Geven(i −1)) = 1

2
(b−a) (12)

This avoids the parallel instantiation of another 2D con-
volver, saving the extra area and energy required.

Figure 13 compares the cross-section of a 7x7 Gabor odd
filter with an approximated version achieved using pixel
subtraction. The approximated response is very close to the
true response.
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Figure 13 Gabor odd filter using Pixel subtraction.

Expanding Eq. 12 using the 4 stream pixel representation
(++,–, +- and -+) for a and b:

Godd(i)

= 1

2
((b++ + b−− − b+− − b−+) − (a++ + a−− − a+− − a−+))

= 1

2
((b++ + b−− + a+− + a−+) − (a++ + a−− + b+− + b−+))

(13)

When the exponential compression technique is used to add
the 8 stochastic streams, we get

Godd(i) ≈ 1

2
G+

odd(i) − 1

2
G−

odd(i). (14)

Note that the output is naturally scaled by half due to the
nature of exponential compression addition.

To test the approximation’s effectiveness in orientation
selectivity, the system was similarly presented with bars at
varying angles and the volume of the processed bar mea-
sured. Figure 14 presents orientation selectivity of all the
approximated Gabor odd filters. The filtering performance
of the stochastic design is better than the 1D floating-point
performance.

Note that the stochastic response is weaker than the 2D
fixed-point implementation unlike the Gabor even response
in Fig. 12. Since we approximate the Gabor odd response
from the Gabor even response, this becomes the third
stage of stochastic processing where correlation between
streams becomes a strong factor in determining the sharp-
ness of orientation selectivity. However, the approximated
2D response is still stronger than the 1D floating-point
counterpart. It is also useful to note that the pixel subtraction
technique can be used for any orientation of a Gabor filter.

4.1.3 Simple and Complex Cells

The pixel streams finally converge onto simple cells.
Whereas simple cells in Eq. 4 add filtered responses
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Figure 14 Orientation selectivity curves for 2D Gabor odd responses.
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from each eye together before squaring them, the stochas-
tic implementation presented here multiplies them before
squaring:

Cd(xL, xR) =
(

Geven+
(

xL + d

2

)
· Geven+

(
xR − d

2

))2

+
(

Geven−
(

xL + d

2

)
· Geven−

(
xR − d

2

))2

+
(

Godd+
(

xL + d

2

)
· Godd+

(
xR − d

2

))2

+
(

Godd−
(

xL + d

2

)
· G odd−

(
xR − d

2

))2

. (15)

This modification allows for better disparity detection
than the original model. The functionality of the binocular
simple cell is to respond maximally when two converged
streams have a positive response, and show an inhibitory
response when those streams are mismatched, as modeled
by the sum of squares in Eq. 4. We propose to replace
the sum with a multiplication as in Eq. 15 because when
there are mismatched responses, one of the streams will be
0 and multiplication by 0 eliminates this failed response.
This acts as boolean checking of bit streams and helps to
provide a positive response only for the disparity the sim-
ple and complex cells are tuned for. While the original
disparity-energy models (i.e. based on Eq. 4) with 2 and
4 simple cells are equivalent [22, 23], we found empiri-
cally that the modified disparity-energy model (based on
Eq. 15) must use the 4 simple cell model for stricter
disparity detection.

To evaluate the effectiveness of disparity selectivity, the
system was presented with impulse inputs. The responses
measured from the complex cell tuned to d=0 are pre-
sented in Fig. 15. The impulse input response between the
left and right eyes had a varying disparity difference from
-12 to 12 pixels. Disparity selectivity using Eq. 15 is bet-
ter for the stochastic implementation for bit stream lengths
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Figure 15 Disparity selectivity curves for complex cell, d=0.

of 31 than the floating-point and equivalent fixed-point
implementations using Eq. 4. Compared to the stochastic
implementation, truncation and quantization noise highly
weakens disparity selectivity for the fixed-point implemen-
tation. In post-processing, though all implementations use
a thresholding function to distinguish strong responses, the
digital implementations require a variable threshold value
to distinguish from the failed responses, which varies based
on the stimuli. Due to the nature of ANDing in the stochas-
tic implementation, a low fixed threshold value is usually
sufficient to filter out the failed responses. Furthermore, we
simplify the implementation of additions after Gabor filters
and within the complex cells using OR gates because the
stream densities are low enough for addition.

4.2 Implementation Details

In the stochastic system, a simple cell is comprised of 2
AND gates and a 1-bit register. One AND gate is for mul-
tiplication of the converged responses, and the other for
squaring; by ANDing the output and its delayed response
from the 1-bit register together. The complex cell is imple-
mented using an OR gate because stream density is low.

We tried implementing both a fully parallel stochastic
architecture (which uses 7 DOG filters) and a partially
parallel system (which uses 1 DOG filter , SIPO (Serial-
In-Parallel-Out) buffer to feed data serially and conversion
circuits (LFSRs, comparators, counters) to switch between
stochastic and fixed-point representations). These results
have confirmed that the fully-parallel implementation is
more energy efficient for an architecture using taylor order
1 approximation in the SC exponential compression con-
volvers.

4.2.1 Noise Generation

Since the 2D SC design employs larger convolutions com-
pared to the 1D architecture and passes through 5 stochastic
stages instead of 4, to achieve good performance with a
stream length of 31, a more extensive noise analysis was
required. Seed analysis was important to ensure the compu-
tations were not suffering due to poor stochastic conversion
and unintended correlation between streams.

Not all configurations of an n-bit LFSR generate good,
unique random sequences [3]. We used 2 XNOR positions
on the 5-bit LFSR which generated a sequence with num-
bers 0 to 30 represented at least once. A different starting
seed can also be used for the same LFSR to generate a
time-shifted sequence, allowing us to use the same LFSR
configuration to convert two numbers into two stochastic
streams with less correlation between them. We generated
the needed noise using the 2 LFSR configurations and
different starting seeds.
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Images were converted using 1 LFSR and parallel instan-
tiations of comparators. Even though individual pixels will
be maximally correlated between each other, once multi-
plied with the filter coefficients, the streams were found
to be sufficiently random to perform the computations.
Furthermore, using multiple LFSRs to generate the pixel
streams hurt the system by adding salt and pepper noise
in the processed image due to the random biases added
from different stochastic streams. DOG and Gabor even fil-
ter coefficients are generated as per Section 3 to maximize
correlation.

The outputs from the two Gabor even filtering blocks are
correlated relative to each other. We reduce correlation by
delaying the Gabor even coefficient stream by one cycle for
one of the Gabor even fiters. This trick helped sharpen the
orientation selectivity curve for the Gabor odd filter stage.

We used one pair of left and right training images to opti-
mize the seeds used in the stochastic system. The optimiza-
tion is performed by simulating the system with random
seed values, and selecting the values that minimize the error
on the training image pair.

4.3 Fixed-point Architecture

For comparison, a conventional digital system using the
original disparity-energy model given by Eq. 4 was imple-
mented using 6-bit signed fixed-point number representa-
tion. This precision corresponds to a 25 − 1-bit unipolar
stochastic implementation. We have chosen not to use the
modified model for fixed-point implementation because the
multiplications in Eq. 15 would yield a larger circuit. The
input coefficients are identical to the stochastic system
except that they have been scaled to avoid overflow.

The architecture is partially parallel using 1 DOG filter
instead of 7 and some memory to buffer the past 6 rows nec-
essary for the Gabor filter layer; to reduce area. The memory
unit will be a shifting Serial-In-Parallel-Out buffer, imple-
mented using registers. The memory required will be 6 rows
x 106 pixels x 6 bits.

DOG and Gabor even filtering stages use 6-bit multi-
pliers and the 12-bit output truncated to 9 and 10 bits for
addition respectively. The output from these stages is trun-
cated to 6 bits and passed to the next stage. Gabor odd
approximating circuit uses 7-bit adders and scales the output
back to 6 bits. Simple cells use 7-bit adders and 7-bit mul-
tipliers. Complex cells use 8-bit adders providing an 8-bit
unsigned output for the entire system.

When signed number representation is used, the model
in Fig. 2 is simplified to use two simple cells only since we
use the original disparity energy model here [22]. The adder
and multiplier sizes have been carefully chosen to ensure it
is the smallest possible design for the system to work and
that the dynamic range of the system is preserved.

(a) (b)

Figure 16 Experiment to detect disparity.

5 Results

5.1 Experiment Setup

To detect the depth of objects, an experiment was setup sim-
ilar to [23] as shown in Fig. 16a. The cameras were setup
19 cm apart with an 8 degree angle from the vertical. As a
result, the fixation point (the point at the intersection of the
line of sight of each camera) is 66 cm away. At this range,
disparity corresponds to around 3 cm per pixel. We place
one white pole on the fixation point. To detect disparities of
-8 and +8, two white poles were placed at a distance of 42
and 90 cm respectively from the cameras center. The poles
were then adjusted appropriately to derive images with the
right disparity to account for the error in the setup. These
poles sit on a circle with a 60 cm diameter.

5.2 Filter Outputs

Figures 17, 18 and 19 show the Difference-of-Gaussian
(DOG), Gabor even and Gabor odd filtered responses
from the right eye image for different implementations.
Also, the images are normalized and streams accumulated
using counters. Visually, all implementations show similar
behaviour. Here, the SC order 1 visual performance with
stream lengths of 31 is closer to the fixed-point filter output.
For the 1D architecture from [5], at least 28−1 stream length
with order 2 was needed to see similar visual behaviour
between SC and fixed-point filter outputs.

(a) (b) (c)

Figure 17 DOG filtered outputs.
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(a) (b) (c)

Figure 18 Gabor even filtered outputs.

(a) (b) (c)

Figure 19 Gabor odd filtered outputs.

(a) (b) (c) (d) (e) (f) (g)

Figure 20 Disparity maps (floating-point).

(a) (b) (c) (d) (e) (f) (g)

Figure 21 Disparity maps (fixed-point 6 bits).

(a) (b) (c) (d) (e) (f) (g)

Figure 22 Disparity maps (Improved stochastic system with SC
length = 31).

(a) (b) (c) (d) (e) (f)

Figure 23 Floating-point disparity results from different image pairs.

(a) (b) (c) (d) (e) (f)

Figure 24 Fixed point 6b disparity results from different image pairs.

(a) (b) (c) (d) (e) (f)

Figure 25 Improved stochastic system SC 31b results from different
image pairs.

Table 1 Average error for different implementations.

Type Eqn. Threshold Average Error % # Trials

used (min, mean, max)

Floating-pt 4 0.27 14.6 1

Fixed-pt 6b 4 7 16.4 1

Mod. floating-pt 15 0.0013 12.7 1

Stoch. 31b 15 1 (8.9, 14.2, 22) 30
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Figure 26 Effect of stream length on average error.
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Table 2 Synthesis results
without interface circuitry. Instance (1x100) Logic cell count Total area [mm2] Delay [ns] Area ratio ADP [mm2 ·ns] ADP ratio

SC ord 1 50.8k 0.308 5448 0.03 1679 0.285

Fixed pt. 1.37M 9.95 592 1 5886 1

5.3 Disparity Detection

Figures 20, 21 and 22 show the disparity maps for the
floating-point, fixed-point and the improved stochastic 2D
implementations. MATLAB post-processing merges the
disparity maps into 1 image, D(x, y) with color coded dis-
parity regions based on the following equation from [23]:

D(x, y) = argmaxd Cd(x, y), d ∈ (−8, −4, 0, +4, +8),

(16)

where Cd is defined by original Eq. 4 or modified Eq. 15
complex cell. We use a threshold, T, to filter out failed
responses. If Cd(x, y) > T , at each pixel position, the max-
imum value from the 5 disparity maps is taken and colored
according to its disparity. [Blue, cyan, green, yellow, red]
represent the disparities of [+8,+4,0,-4,-8].

The stochastic system provides better disparity detec-
tion using the modified Eq. 15 than fixed or floating-point
systems using the original Eq. 4.

To better quantify the error, we obtained 4 additional
image pairs with poles at different disparities using a similar
setup and manually created ideal disparity maps depend-
ing on the position and dimensions of the poles from the
right and left images to estimate the error. The error met-
ric weighs missing/incorrect pixels where a pole is expected
by 3x compared to misclassification where a pole is absent.
This weighting is necessary to worsen the error of the null
system; that is a system that fails to detect any of the pre-
defined detectable disparities. The null system performs
relatively well with an un-weighted error metric because of
the large empty regions in the images. This weighting allows
the error metric to give more importance to the misclassifi-
cation of an object’s disparity than to incorrectly assigned
disparities in empty regions.

The floating-point, fixed-point and stochastic results are
presented in Figs. 23, 24 and 25. Error reported in this paper
is the average error over the 5 image pairs.

Table 1 presents the average error for various imple-
mentations. Average error for the 5 merged disparity map
outputs from Figs. 23 and 24 are shown as “Floating-
pt” and “Fixed-pt 6b”. Also, included just in Table 1 are
the average results over the 5 image pairs for a floating-
point implementation that uses the modified Eq. 15 labelled
“Mod. floating-pt”. This result provides a point of compar-
ison for the performance of the stochastic system, but note
that a conventional system based on Eq. 15 would have a
large implementation complexity because of the required
multipliers.

For the stochastic result labelled “Stoch. 31b”, the sys-
tem is run on the 5 image pairs for 30 trials, where the start
values for the LFSRs are randomized (but the LFSR config-
urations, i.e. XNOR positions used were fixed). The best,
average, and worst result over the 30 trials are presented
in Table 1. On average, the 31b stochastic system provides
more accurate disparity maps than the floating and fixed-
point implementations based on Eq. 4. We can improve
the performance of the stochastic system by selecting the
best performing seed configuration, as described in Section
4.2.1, yielding an improved 8.9 % error. The outputs of the
system for the optimized seed configuration are shown in
Fig. 25.

In general, it is important to optimize the seeds used
for the stochastic system for good performance. However,
because of the limited sets of images we are using as a
benchmark, we want to be cautious in reporting the results
because we cannot guarantee that the best-seed perfor-
mance holds over a large class of images. So, Sections 5.4
and 5.5 report conservative area-delay product (ADP) and
energy estimates that are based on the full 31b streams.
Recall that with 31b streams, the stochastic system out-
performs the conventional floating-point system not just
for the best choice of seed, but also when the perfor-
mance is averaged over the choice of seed. By measuring
the performance in this way, we remove the possibility
that the performance gain is the result of an overfitting of
the system to the type of image found in the benchmark
set.

Table 3 Synthesis results with
interface circuitry. Instance (1x100) Logic cell count Total area [mm2] Delay [ns] Area ratio ADP [mm2·ns] ADP ratio

SC ord 1 91.3k 0.639 5448 0.06 3453 0.57

Fixed pt. 1.38M 10.22 591.6 1 6049 1
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Table 4 Power and energy
without interface circuitry. Inst. Switch. Power (mW) Leak. Power (mW) Total Power (mW) Power ratio Energy (nJ) Energy ratio

SC. 1 21.3 0.82 44.2 0.056 241 0.52

Fix-pt. 137.0 41.3 785 1 464 1

5.3.1 Effect of Latency on Average Stochastic Error

One advantage of stochastic systems is the ability to trade-
off accuracy for reduced latency by shortening the length of
the stochastic sequences.

The stochastic system with optimized seed values was
simulated to detect disparity on the 5 image pairs as
latency is decreased from 31 bits per computation to 5 bits.
Figure 26 plots the error on the benchmark image set at dif-
ferent latencies. We are able to reduce the bits required per
computation from 31 bits down to 11 and still match or per-
form better disparity detection than the fixed-point design.
The error gracefully degrades from 8.9 % down to 16.14. %.

5.4 Synthesis and Performance Results

A 2D 1x100 architecture is synthesized using Cadence RC
compiler for TSMC 65 nm CMOS technology and area
results are reported here. Table 2 presents results for the
circuits without interface circuitry included, while Table 3
presents results including them. The stochastic and fixed-
point circuits operate with a clock period of 1.7ns and 5.5ns
respectively. For the fixed-point design, interface circuitry
includes the input and output registers. For the stochas-
tic design, this includes input registers, linear feedback
shift registers (LFSRs) for random number generation, com-
parators and counters to convert from digital to stochastic
domain and back.

To provide a fair comparison, we use the area × delay
product (ADP) measure to normalize for latency of the
stochastic system. The area and ADP measure of the
stochastic implementation are very small compared to the
fixed-point implementation even if interface circuitry is
included.

The stochastic results in Tables 2–5 assume a stream
length of 31 bits. Recall that such a stream length allows
outperforming the floating-point system even when the per-
formance is averaged over the seed configurations. If instead
the performance is measured by using the best seed value,
the ADP ratio can be improved to 0.107 (without interface
circuitry) or 0.214 (with interface circuitry) by reducing the

stream length to 11 bits, which yields a performance of 16 %,
just slightly better than the fixed-point system. The delay is
also reduced to 2046 ns. Note that for low latency applica-
tions, we can increase the number of parallel instances of
the circuit operating on the same pixel without affecting the
ADP metric.

Typical SC systems require longer run-times than 2n to
account for precision loss due to SC arithmetic to match an
equivalent fixed-point system.We chose 6 bits for the signed
fixed-point system since it is sufficient to get performance
similar to the floating-point system. Note that the preci-
sion of the stochastic system could be increased by using
larger LFSRs and counters in the interface circuitry, without
changing the stochastic circuit.

5.5 Energy and Power Estimation

We used Synopsys PrimeTime to estimate power consump-
tion of the circuit by providing realistic gate level switching
activities from ModelSim along with parasitics information
from Cadence RC Compiler tool. Tables 4 and 5 present
the estimates for power and energy for the proposed cir-
cuit when the full 31-bit stochastic stream is used for all
pixels. The stochastic circuit consumes lower power and
energy than the fixed-point design. SC circuit order 1 con-
sumes only 5.6 % of the power required for the fixed-point
design without interface circuitry. Due to the longer latency
of the stochastic system, energy consumption becomes 52%
of the fixed-point design, but is still much lower than the
fixed-point design.

Overall energy ratios are usually higher for stochastic
circuits when compared with the ADP measure. This is
because switching activity tends to be higher in stochastic
circuits than in fixed-point circuits. So, stochastic circuits
tend to consume more energy than under fixed-point oper-
ation. However, stochastic circuits allow tuning latency for
the accuracy required. Also, they are highly error resilient
and will be able to function in highly unreliable conditions
where greater energy savings might be possible.

The energy usage including interface circuitry is much
higher when compared to the energy used by the stochastic

Table 5 Power and energy
with interface circuitry. Inst. Switch. Power (mW) Leak. Power (mW) Total Power (mW) Power ratio Energy (nJ) Energy ratio

SC. 1 36.0 1.8 154 0.19 839 1.73

Fix-pt. 138 41.7 818 1 484 1
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Table 6 Stochastic design breakdown.

Instance Logic cell Total area Switching Leakage Total Area ratio Energy (nJ) Energy ratio
count [mm2] Power (mW) Power (mW) Power (mW)

Complete circuit 91.3k 0.634 36.0 1.80 154.0 1 839 1

Stochastic circuit 50.8k 0.308 21.3 0.82 44.2 0.49 241 0.29

Input Interface 30.9k 0.226 14.3 0.78 95.8 0.36 522 0.62

Output Interface 9.5k 0.580 0.33 0.20 14.0 0.09 78 0.09

circuit. To illustrate the inefficiency of using LFSRs to
convert unsigned numbers to stochastic streams, Table 6
presents the breakdown of the resource usage of the
stochastic design. While the Input Interface takes up only
36 % of the total area, it consumes 62 % of the energy.
We have found that registers used in stochastic circuits
tend to consume far greater energy, compared to their
operation in a fixed-point design due to high switching
activity. This might be addressed in the future by using
sensors that provide the data directly in the form of stochas-
tic streams, for example by building them from MTJ
devices [20].

When the performance is measured by using the best seed
values instead, the energy ratios can be improved to 0.20
(without interface circuitry) and 0.65 (with interface cir-
cuitry) by reducing the stream length from 31b to 11b (see
Fig. 26).

6 Configurable Architecture

Using 2D Gabor filters allows us to bring the implemen-
tation a step towards reusability since 2D filters can be
oriented in any direction. In the stochastic synthesized
design, to optimize area, the Gabor filter coefficients are
pre-sorted into positive and negative groups before synthe-
sis before being presented to the exponential convolution
architecture. This hardwires the implementation to the spe-
cific filter used here. However, if the coefficients are to be

xe−

xe−

xe−

xe−

−− z
e

+− z
e

Figure 27 Configurable exponential convolution architecture [11].

fully swappable similar to the original exponential convolu-
tion architecture [11], we need to use de-multiplexers in the
exponential convolution architecture to choose between the
positive and negative AND gate as presented in Fig. 27.

The overall area increases by 32 %, but the energy
increases only by 6 % as the added circuitry will not be
switching during run-time for a specific filter.

7 Discussion and Conclusion

In this paper, we presented a generalized stochastic VLSI
architecture and implementation of the disparity-energy
model for depth perception. Using 2D filters allowed
stronger orientation selectivity than 1D ones. Approximat-
ing the Gabor odd response allowed reduction in area. The
circuit can be generalized to use swappable Gabor filters to
detect edges with arbitrary angles.

The proposed fully parallel five-stage stochastic archi-
tecture using the modified disparity-energy model functions
better at latencies of 31 bits compared to the floating-
point and fixed-point 6-bit implementations using the
original disparity-energy model. This was possible due
to the improved SC exponential compression technique
that performs large number of additions in the stochas-
tic domain with minimal scaling loss. By exploiting cor-
relation between streams, we minimized the number of
LFSRs needed and improved accuracy of intermediate
number representations. Separating and computing on the
positive and negative streams in this unipolar architecture
allowed the multi-stage feed-forward architecture with low
scaling and accuracy loss. Further, a careful noise anal-
ysis allowed choosing good random number generators
to generate stochastic numbers accurately with appropri-
ate correlation choices where necessary. Conservatively, we
achieve an area-delay product savings of 71 % and energy
savings of 48 % compared to a reference fixed-point imple-
mentation. At the same error rate between the stochastic and
fixed-point systems when the best-case seed values are used
for LFSRs, ADP and energy savings increase to 89 % and
81 % respectively.

The inherent robustness of SC circuits can enable fur-
ther energy savings by using the latest technology nodes or
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increasing unreliability; for example by reducing the sup-
ply voltage and allowing timing violations. Asynchronous
design methods can also further reduce energy usage.
Lastly, latency can be traded for accuracy, without extra
hardware. These benefits serve to highlight the wide flexi-
bility that SC systems offer, especially when considering the
implementation of large scale neuromorphic models.

Since the proposed configurable architecture allows
modifying the Gabor filter coefficients, a similar approach
could be used to implement the HMAX based neuromorphic
algorithms for object detection [18]. Future work will also
use [21] to generate the Gabor filter coefficients directly in
the stochastic domain for any orientation, without needing
to store them and convert them to stochastic streams.
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